

The BLUE DOTS initiative

Elements for a roadmap

Vincent Coudé du Foresto for the Blue Dots team

Objectives of the initiative

- Contribute to building a community in Europe around the exoplanets theme
- Recognizing that the ultimate science goal (characterization of habitable exoplanet atmospheres) will require several intermediate steps...
- ...converge towards a strategy enabling a more coherent approach to calls for proposals in ground and space based projects...
- ...and most notably in time for the next CfP ESA linked to Cosmic Vision (expected in 2010)
- Beyond that: remain as a permanent structure to federate the community

Deliverables Blue Dots Timeline

- Web site + intranet for information circulation
- Preliminary report to CNES february 2009
- Report v1 end March 2009
 - Call for feedback in the community
- Report stabilized by summer 2009
- Sep. 2009: Pathways conference (proceedings)
- 2010: structuration into European network (TBC)

http://www.blue-dots.net

Deliverables Blue Dots Timeline

- Web site + intranet for information circulation
- Preliminary report to CNES february 2009
- Report v1 end March 2009
 - Call for feedback in the community
- Report stabilized by summer 2009
- Sep. 2009: Pathways conference (proceedings)
- 2010: structuration into European network (TBC)

Methodology prospective

Setting a frame, grammar for roadmap elaboration

What do we want to know?

- For each astrophysical theme:
 - Establish prioritized list of key science questions
 - Physical facts needed to answer those key questions

What can we do?

- For each instrumentation theme:
 - Establish evolution of the quantity, quality of observables as a function of mission size

Then...

- Compile this information in homogeneous tables
- The synthesis of these tables will help prepare the roadmap

And also ...

- Tap into existing information
 - Expertise within WGs
 - Input from existing white papers
 - Proactive external collection when needed
 - Spontaneous external contributions always possible
- Clearly separate matters of consensus from matters of debate
- Deliberately introduce specific missions at a later stage of the prospective

What do we want to know?

- Habitability criteria
- Planetary atmospheres & surfaces
- Formation & evolution of planetary systems
- Targets & their environments

What do we want to know?

- Habitability criteria
- Planetary atmospheres & surfaces
- Formation & evolution of planetary systems
- Targets & their environments
 - What are the physical properties (including mass and age) of the target stars?
 - What are the radiative properties (light and particles, T_{eff}, L_{bol}) of the target stars?
 - What is the time-variation of such emissions?
 - What are the characteristics of the stellar immediate surroundings (i.e., zodiacal dust, companion stars, brown dwarfs or giant planets)?
 - What are the stellar properties (mass, chemical composition) influencing the existence of telluric planets?

What can we do

- A step by step approach:
 - 1 Statistical study of planetary objects
 - –2 Designate sources suitable for spectroscopic follow-up
 - –3 Carry out spectroscopic characterization

What can we do

- A step by step approach:
 - 1 Statistical study of planetary objects
 - –2 Designate sources suitable for spectroscopic follow-up
 - –3 Carry out spectroscopic characterization

These define different science potential levels which can be achieved on different object classes => different difficulties

Methods and scales

- Methods:
 - RV: Radial Velocities
 - µlensing
 - Transit photometry
 - Single Aperture Imaging
 - Multiple Aperture Imaging
 - Astrometry
 - Modelling planetary structures & atmospheres

Methods and scales

- Methods:
 - RV: Radial Velocities
 - µlensing
 - Transit photometry
 - Single Aperture Imaging
 - Multiple Aperture Imaging
 - Astrometry
 - Modelling planetary structures & atmospheres

- Scales:
 - –E (existing)

 - -M (450M€, 10 years)
 - -L (650M€, 15 years)
 - -XL (> 1G€, > 20 years)

Science potential level Methods and scales

	1	2	3	4	5
	Giant (close / young)	Giants (others)	Telluric (others)	Telluric HZ (M)	Telluric HZ (others)
Astrometry	2	2	2		2
MAI	3		3	3	3
SAI	3	3		3	3
Transit	3	2?	3?	3	1
µlensing		1	1	1	1
RV	2	2	2	2	2

Cornerstone questions:

- Can telluric habitable planets be identified from the ground by RV?
- Should we search for habitable planets around M stars?
- Is spectroscopic characterization of the atmosphere of telluric exoplanets possible by transit spectroscopy?
- Do we need to solve the exozodi issue? If yes, how best to solve it?

Timeline methods

	SPL	Existing	G	M	L - XL
Astrometry	2		Giants (far)		Telluric
MAI	3		Hot giants		All others
SAI	3	Young giants	Giants (far)		Telluric
Γransit	2-3?	Close giants		All others	
ulensing	1	Giants		Habitable telluric	
RV	2	Giants, telluric	Habitable telluric		

Cornerstone questions:

- Do we need precursors to large flagship missions ?
- How relevant will be, when it flies, a large flagship mission defined now?
- Are institutional structures compatible with an ambitious exoplanetary program?

Exoplanet roadmaps...

Courtesy J. Schneider

(BLUE DOTS)

http://www.pathways2009.net

Opportunity for satellite meetings

- Benefit from the full exposure and logistics of the Pathways conference
- Extra sessions in late afternoon
- Deadline for proposals May 20th
- See http://www.pathways2009.net/satellite.html for details

